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The heating of a thin metal film subjected to the ultra-short laser pulse is presented. Mathe-
matical description of this process is based on the system of equations describing the electron
and lattice temperatures and dependences between intensity of heat fluxes and temperature
gradients supplemented by appropriate boundary and initial conditions. In this approach,
a system of four equations needs to be solved. In this paper, another method of solution of
the above formulated problem is proposed. Using appropriate mathematical manipulations,
instead of four equations, two equations describing the lattice and electron temperature dis-
tributions are obtained. This system of two equations is solved using an implicit scheme of
the finite difference method. The results obtained using both approaches were compared.
They were almost identical, which confirms the correctness of the proposed method.
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1. Introduction

Heat transfer in the thin metal film domain subjected to the ultra-short laser pulse can be
described by different mathematical models. One of them is a two-temperature model (TTM)
firstly formulated by Anisimov and co-workers (Anisimov et al., 1974). In this model, two dif-
ferent temperatures, the electron temperature and the lattice temperature appear, and they
are described by two coupled Fourier equations. The model based on the classical Fourier law
is called the parabolic TTM and it has some limitations. It means, it is valid only when the
characteristic space and time scales of the temperature field are much greater compared to the
electrons mean free path and the relaxation time (Alexopoulou and Markopoulos, 2023). In turn,
the model to be used when the characteristic space and time scales of the temperature field are
comparable with the electrons mean free path and relaxation time is called the hyperbolic two-
-temperature model (Qiu and Tien, 1993; Chen et al., 2004; Smith and Norris, 2003). This model
is based on the generalized Fourier law, in which the relaxation time appears, and consists of
four equations while two of them describe distributions of lattice and electron temperatures,
and two of them describe relationships between intensity of heat fluxes and lattice and electron
temperature gradients.

Currently, these models are used for the modeling of thermal processes occurring in the laser
treated materials, see e.g. (Chen and Beraun, 2001; Majchrzak and Dziatkiewicz, 2015; Sobolev,
2016). Here one can mention the analytical or semi-analytical methods, e.g. (Oane et al. 2019),
finite difference method, e.g. (Niu and Dai, 2009; Huang et al., 2011; Dziatkiewicz et al., 2014),
finite volume method, e.g. (Qiu and Tien, 1993) and finite element method, e.g. (Saghebfar et
al., 2017).

1Paper presented during PCM-CMM 2023, Gliwice, Poland
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A broad literature review on two-temperature models can be found in the paper by Alex-
opoulou and Markopoulos (2023).

2. Statement of the problem

A thin metal film subjected to the ultra-short laser pulse is considered. Usually, the laser spot
size is much larger than film thickness and then it is possible to treat the interactions as a
one-dimensional (1D) heat transfer process, wherein the front surface x = 0 is irradiated by the
laser pulse, and this simplification is used here.
The two-temperature model describes temporal and spatial evolution of the lattice and elec-

tron temperatures in the irradiated metal by two coupled nonlinear differential equations (Tzou,
1997; Zhang, 2007)

Ce(Te)
∂Te(x, t)

∂t
= −
∂qe(x, t)

∂x
−G(Te, Tl)[Te(x, t)− Tl(x, t)] +Q(x, t)

Cl(Tl)
∂Tl(x, t)

∂t
= −
∂ql(x, t)

∂x
+G(Te, Tl)[Te(x, t)− Tl(x, t)]

(2.1)

where Te(x, t), Tl(x, t), qe(x, t), ql(x, t) are temperatures and heat fluxes of the electrons and
lattice, respectively, Ce(Te), Cl(Tl) are volumetric specific heats, G(Te, Tl) is the electron-
-phonon coupling factor which characterizes the energy exchange between electrons and phonons,
Q(x, t) is the source function associated with laser irradiation, x is the spatial coordinate and
t denotes time.
The following relationships between the intensity of heat fluxes and temperature gradients

proposed by Qiu and Tien (1993) are used

qe(x, t+ τe) = −λe(Te, Tl)
∂Te(x, t)

∂x

ql(x, t+ τl) = −λl(Tl)
∂Tl(x, t)

∂x

(2.2)

where τe is the relaxation time of free electrons in metals (the mean time for electrons to change
their states), τl is the relaxation time in phonon collisions, λe(Te, Tl), λl(Tl) are the thermal
conductivities of electrons and lattice, respectively.
Expanding the left-hand sides of equations (2.2) into the Taylor series with an accuracy of

two terms, one obtains

qe(x, t) + τe
∂qe(x, t)

∂t
= −λe(Te, Tl)

∂Te(x, t)

∂x

ql(x, t) + τl
∂ql(x, t)

∂t
= −λl(Tl)

∂Tl(x, t)

∂x

(2.3)

The source function Q(x, t) is associated with laser irradiation (Chen and Beraun, 2001; Ma-
jchrzak and Dziatkiewicz, 2019)

Q(x, t) =

√

β

π

1−R

tpδ
I exp

[

−
x

δ
− β
(t− 2tp)

2

t2p

]

(2.4)

where I is the laser intensity, tp is the characteristic time of the laser pulse, δ is the optical
penetration depth, R is the reflectivity of the irradiated surface and β = 4 ln 2.
For x = 0 and x = L the non-flux conditions are assumed, and the initial condition

Te(x, 0) = Tl(x, 0) = Tp, where Tp is the initial temperature of electrons and lattice, is also
known.
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In literature, the algorithms that involve simultaneous solution of equations (2.1) and (2.3)
using a staggered grid are presented, e.g. (Huang et al., 2009; Majchrzak et al., 2017; Wang et
al., 2006, 2008). It means that for even nodes the temperatures are calculated, and for odd nodes
the intensity of the heat fluxes are determined (1D problem). In this paper, another method of
solution of the above formulated problem is proposed. Using appropriate mathematical manipu-
lations, instead of four equations, two equations describing the lattice and electron temperature
distributions are obtained. This system of two equations is solved using an implicit scheme of
the finite difference method.

3. Mathematical model

In this Section, the mathematical manipulations leading to two equations describing the heat
transfer in a thin metal layer subjected to the ultra-short laser pulse are presented.
From equation (2.3)1 it follows that

−qe(x, t) = τe
∂qe(x, t)

∂t
+ λe(Te, Tl)

∂Te(x, t)

∂x
(3.1)

therefore

−
∂qe(x, t)

∂x
= τe
∂2qe(x, t)

∂t∂x
+
∂

∂x

[

λe(Te, Tl)
∂Te(x, t)

∂x

]

(3.2)

Formula (3.2) is introduced into equation (2.1)1, and then

Ce(Te)
∂Te(x, t)

∂t
= τe
∂2qe(x, t)

∂t∂x
+
∂

∂x

[

λe(Te, Tl)
∂Te(x, t)

∂x

]

−G(Te, Tl)[Te(x, t)− Tl(x, t)] +Q(x, t)

(3.3)

It follows from equation (2.1)1 that

∂qe(x, t)

∂x
= −Ce(Te)

∂Te(x, t)

∂t
−G(Te, Tl)[Te(x, t)− Tl(x, t)] +Q(x, t) (3.4)

Introducing (3.4) into equation (3.3), one has

Ce(Te)
∂Te(x, t)

∂t
= τe
∂

∂t

[

−Ce(Te)
∂Te(x, t)

∂t
−G(Te, Tl)[Te(x, t)− Tl(x, t)] +Q(x, t)

]

+
∂

∂x

[

λe(Te, Tl)
∂Te(x, t)

∂x

]

−G(Te, Tl)[Te(x, t)− Tl(x, t)] +Q(x, t)

(3.5)

or

Ce(Te)
∂Te(x, t)

∂t
+ τe
∂

∂t

[

Ce(Te)
∂Te(x, t)

∂t

]

=
∂

∂x

[

λe(Te, Tl)
∂Te(x, t)

∂x

]

−G(Te, Tl)[Te(x, t)− Tl(x, t)] − τe
∂

∂t

{

G(Te, Tl)[Te(x, t)− Tl(x, t)]
}

+Q(x, t) + τe
∂Q(x, t)

∂t

(3.6)

In a similar way, the equation describing the lattice temperature can be derived

Cl(Tl)
∂Tl(x, t)

∂t
+ τl
∂

∂t

[

Cl(Tl)
∂Tl(x, t)

∂t

]

=
∂

∂x

[

λl(Tl)
∂Tl(x, t)

∂x

]

+G(Te, Tl)[Te(x, t)− Tl(x, t)] + τl
∂

∂t
{G(Te, Tl)[Te(x, t)− Tl(x, t)]}

(3.7)
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Equations (3.6) and (3.7) can be written in the form

Ce(Te)
[∂Te(x, t)

∂t
+ τe
∂2Te(x, t)

∂t2

]

+ τe
∂Ce(Te)

∂t

∂Te(x, t)

∂t
=
∂

∂x

[

λe(Te, Tl)
∂Te(x, t)

∂x

]

−G(Te, Tl)[Te(x, t)− Tl(x, t)] − τe
∂G(Te, Tl)

∂t
[Te(x, t)− Tl(x, t)]

− τeG(Te, Tl)
[∂Te(x, t)

∂t
−
∂Tl(x, t)

∂t

]

+Q(x, t) + τe
∂Q(x, t)

∂t

Cl(Tl)
[∂Tl(x, t)

∂t
+ τl
∂2Tl(x, t)

∂t2

]

+ τl
∂Cl(Tl)

∂t

∂Tl(x, t)

∂t
=
∂

∂x

[

λl(Tl)
∂Tl(x, t)

∂x

]

+G(Te, Tl)[Te(x, t)− Tl(x, t)] + τl
∂G(Te, Tl)

∂t
[Te(x, t)− Tl(x, t)]

+ τlG(Te, Tl)
[∂Te(x, t)

∂t
−
∂Tl(x, t)

∂t

]

(3.8)

By performing derivative operations, one has (arguments omitted for simplicity)

Ce(Te)
(∂Te
∂t
+ τe
∂2Te
∂t2

)

+ τe
dCe(Te)

dTe

(∂Te
∂t

)2
= λe(Te, Tl)

∂2Te
∂x2

+
[∂λe(Te, Tl)

∂Te

∂Te
∂x
+
∂λe(Te, Tl)

∂Tl

∂Tl
∂x

]∂Te
∂x
−G(Te, Tl)(Te − Tl)

− τe
[∂G(Te, Tl)

∂Te

∂Te
∂t
+
∂G(Te, Tl)

∂Tl

∂Tl
∂t

]

(Te − Tl)

− τeG(Te, Tl)
(∂Te
∂t
−
∂Tl
∂t

)

+Q+ τe
∂Q

∂t

Cl(Tl)
(∂Tl
∂t
+ τl
∂2Tl
∂t2

)

+ τl
dCl(Tl)

dTl

(∂Tl
∂t

)2
= λl(Tl)

∂2Tl
∂x2
+
dλl(Tl)

dTl

(∂Tl
∂x

)2

+G(Te, Tl)(Te − Tl) + τl
[∂G(Te, Tl)

∂Te

∂Te
∂t
+
∂G(Te, Tl)

∂Tl

∂Tl
∂t

]

(Te − Tl)

+ τlG(Te, Tl)
(∂Te
∂t
−
∂Tl
∂t

)

(3.9)

Summing up, in the proposed approach instead of solving four equations (2.1) and (2.3) it is
enough to solve two equations (3.9) supplemented by appropriate boundary and initial condi-
tions.

4. Method of solution

The problem formulated is solved using an implicit scheme of the finite difference method
(Majchrzak and Dziatkiewicz, 2015; Niu and Dai, 2009; Wang et al., 2008). Let us denote

T fi = T (ih, f∆t), where h is the mesh step, ∆t is the time step, i = 0, 1, 2, . . . , n. Using the
appropriate difference quotients, the following approximation of equation (3.9)1 is proposed

Cf−1ei

(T fei − T
f−1
ei

∆t
+ τe
T fei − 2T

f−1
ei + T

f−2
ei

(∆t)2

)

+ τe
[dCe(Te)

dTe

]f−1

i

(T f−1ei − T
f−2
ei

∆t

)2

= λf−1ei
T fei−1 − 2T

f
ei + T

f
ei+1

h2
+Df−1ei −G

f−1
i (T

f−1
ei − T

f−1
li )− E

f−1
ei

− τeG
f−1
i

(T f−1ei − T
f−2
ei

∆t
−
T f−1li − T

f−2
li

∆t

)

+Qfi + τe
(∂Q

∂t

)f

i

(4.1)
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where

Df−1ei =

{

[∂λe(Te, Tl)

∂Te

]f−1

i

T f−1ei+1 − T
f−1
ei−1

2h
+
[∂λe(Te, Tl)

∂Tl

]f−1

i

T f−1li+1 − T
f−1
li−1

2h

}

T f−1ei+1 − T
f−1
ei−1

2h

Ef−1ei = τe

{

[∂G(Te, Tl)

∂Te

]f−1

i

T f−1ei − T
f−2
ei

∆t
+
[∂G(Te, Tl)

∂Tl

]f−1

i

T f−1li − T
f−2
li

∆t

}

(T f−1ei − T
f−1
li )

(4.2)

Equation (4.1) can be written in the form

T fei =
λf−1ei

Af−1ei h
2
(T fei−1 + T

f
ei+1) +

F f−1ei

Af−1ei
+
1

Af−1ei

[

Qfi + τe
(∂Q

∂t

)f

i

]

(4.3)

where

Af−1ei = C
f−1
ei

∆t+ τe
(∆t)2

+
2λf−1ei
h2

F f−1ei = C
f−1
ei

∆t+ 2τe
(∆t)2

T f−1ei −C
f−1
ei

τe
(∆t)2

T f−2ei − τe
[dCe(Te)

dTe

]f−1

i

(T f−1ei − T
f−2
ei

∆t

)2

+Df−1ei −G
f−1
i (T

f−1
ei − T

f−1
li )− E

f−1
ei − τeG

f−1
i

(T f−1ei − T
f−2
ei

∆t
−
T f−1li − T

f−2
li

∆t

)

(4.4)

In a similar way, equation (3.9)2 is approximated, namely

Cf−1li

(T fli − T
f−1
li

∆t
+ τl
T fli − 2T

f−1
li + T

f−2
li

(∆t)2

)

+ τl
[dCl(Tl)

dTl

]f−1

i

(T f−1li − T
f−2
li

∆t

)2

= λf−1li
T fli−1 − 2T

f
li + T

f
li+1

h2
+
[dλl(Tl)

dTl

]f−1

i

(T f−1li+1 − T
f−1
li−1

2h

)2

+Gf−1i (T
f−1
ei − T

f−1
li ) + E

f−1
li + τlG

f−1
i

(T f−1ei − T
f−2
ei

∆t
−
T f−1li − T

f−2
li

∆t

)

(4.5)

where

Ef−1li = τl

{

[∂G(Te, Tl)

∂Te

]f−1

i

T f−1ei − T
f−2
ei

∆t
+
[∂G(Te, Tl)

∂Tl

]f−1

i

T f−1li − T
f−2
li

∆t

}

(T f−1ei − T
f−1
li )

(4.6)

Equation (4.5) can be written in the form

T fli =
λf−1li

Af−1li h
2
(T fli−1 + T

f
li+1) +

F f−1li

Af−1li
(4.7)

where

Af−1li = C
f−1
li

∆t+ τl
(∆t)2

+
2λf−1li
h2

F f−1li = Cf−1li
∆t+ 2τl
(∆t)2

T f−1li − C
f−1
li

τl
(∆t)2

T f−2li − τl
[dCl(Tl)

dTl

]f−1

i

(T f−1li − T
f−2
li

∆t

)2

+
[dλl(Tl)

dTl

]f−1

i

(T f−1li+1 − T
f−1
li−1

2h

)2
+Gf−1i (T

f−1
ei − T

f−1
li ) + E

f−1
li

+ τlG
f−1
i

(T f−1ei − T
f−2
ei

∆t
−
T f−1li − T

f−2
li

∆t

)

(4.8)
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The non-flux boundary conditions are also approximated

x = 0 :
T fe1 − T

f
e0

h
= 0 x = L :

T fen − T
f
en−1

h
= 0

x = 0 :
T fl1 − T

f
l0

h
= 0 x = L :

T fln − T
f
ln−1

h
= 0

(4.9)

that is

T fe0 = T
f
e1 T fen = T

f
en−1 T fl0 = T

f
l1 T fln = T

f
ln−1 (4.10)

From the initial condition, it follows that

T 0ei = T
1
ei = Tp T 0li = T

1
li = Tp i = 0, 1, . . . , n (4.11)

For each transition tf−1 → tf , the system of equations (4.3), (4.7), (4.10) is solved using e.g.
the Gauss-Seidel iterative method.

5. Results of computations

A gold film of thickness L = 100 nm (1nm = 10−9m) is considered. The initial temperature is
equal to Tp = 300K.
For a high laser intensity, the following formula describing temperature-dependent volumetric

specific heat of electrons is proposed (Huang et al., 2009, 2011; Majchrzak and Dziatkiewicz,
2019)

Ce(Te) =























































ATe for Te <
TF
π2

A
TF
π2
+
NkB −ATF /π

2

2TF /π2

(

Te −
TF
π2

)

for
TF
π2
¬ Te < 3

TF
π2

NkB +
NkB/2

TF − 3TF /π2

(

Te − 3
TF
π2

)

for 3
TF
π2
¬ Te < TF

3N
kB
2

for Te  TF

(5.1)

where N = 5.9 ·1028 m−1 is the electron concentration, TF = 64200K is the Fermi temperature,
kB is the Boltzmann constant and A is given by formula A = π

2NkB/(2TF ) = 62.7 J/(m
3K).

The electrons thermal conductivity is described by the formula (Huang, 2011; Majchrzak
and Dziatkiewicz, 2015)

λe(Te, Tl) = χ
[(Te/TF )

2 + 0.16]5/4[(Te/TF )
2 + 0.44](Te/TF )

[(Te/TF )2 + 0.092]1/2[(Te/TF )2 + η(Tl/TF )]
(5.2)

and the coupling factor

G(Te, Tl) = Grt
[Ae
Bl
(Te + Tl) + 1

]

(5.3)

where χ = 353W/(mK), η = 0.16, Ae = 1.2 · 10
7 1/(K2s), Bl = 1.23 · 10

11 1/(Ks) and
Grt = 2.2 · 10

16W/(m3K) (Majchrzak and Dziatkiewicz, 2015).
Temperature dependent thermal conductivity and volumetric specific heat of gold are taken

from (Huang et al., 2009, 2011)

λl(Tl)
[W

mK

]

=

{

320.973 − 0.0111Tl − 2.747 · 10
−5T 2l − 4.048 · 10

−9T 3l Tl ¬ 1336K

37.72 + 0.0711Tl − 1.721 · 10
−5T 2l + 1.064 · 10

−9T 3l Tl > 1336K
(5.4)
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and

Cl(Tl)
[ J

m3K

]

=















(105.1 + 0.2941Tl − 8.731 · 10
−4T 2l + 1.787 · 10

−6T 3l
−7.051 · 10−10T 4l + 1.538 · 10

−13T 5l )19300 Tl ¬ 1336K

163.205 · 17280 Tl > 1336K

(5.5)

The other parameters are as follows: electrons relaxation time τe = 0.04 ps, phonons relaxation
time τl = 0.8 ps (Chen and Beraun, 2001), reflectivity R = 0.93, optical penetration depth
δ = 15.3 nm.
The problem is solved using the finite difference method on the assumption that∆t = 0.002 ps

and h = 1nm.
First, calculations were performed for the laser intensity I = 4182 J/m2 and the charac-

teristic time of laser pulse tp = 0.1 ps. In Figs. 1 and 2, the electrons and lattice temperature
histories on the irradiated surface are presented. These temperatures were compared with the
results obtained using a repeatedly verified algorithm based on the simultaneous solution of
four equations (2.1) and (2.3) using the staggered grid and thoroughly described, among others
in (Majchrzak and Dziatkiewicz, 2015, 2019). As can be seen, the results are almost identical,
which confirms the correctness of the algorithm and the authors’ computer program presented
in this paper.

Fig. 1. Comparison of calculated electron temperature

Fig. 2. Comparison of calculated lattice temperature
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In Figs. 3 and 4, the temperature distributions of electrons and lattice for selected moments of
time are presented. The solid line shows the calculation results for the model with two equations
and the dashed line for the model with four equations. It can be seen that the obtained results
are very cosistent.

Fig. 3. Comparison of calculated electron temperature for different times

Fig. 4. Comparison of calculated lattice temperature for different times

Then, the influence of the parameters Cl and λl on the obtained results was checked. Calcula-
tions were prepared for constant values of Cl and λl equal to 2.5 ·10

6 J/(m3K) and 315W/(mK),
respectively, and for values obtained from formulas (5.4) and (5.5).

Figures 5 and 6 show the distribution of temperature of electrons and lattice over time. The
solid line shows the results obtained for variable parametrs and the dashed line for constant
values.

Calculations were performed for low and high laser intensities. It can be noticed that as
the laser intensity increases, the use of constant parameters Cl and λl is inappropriate and the
obtained results differ significantly. For low intensities, the results are almost identical.
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Fig. 5. Electron temperature distribution

Fig. 6. Lattice temperature distribution

6. Conclusions

In this paper, the laser heating of a thin metal film made of gold is analyzed. A two-temperature
model containing four equations (2.1) and (2.3) and the proposed approach with two equations
(3.9) were considered. These problems were solved using the finite difference method. The prob-
lem with two equations was solved by an implicit the scheme of finite difference method, while
the problem with four equations was solved by an explicit scheme of the finite difference method
with the staggered grid. The results were compared, and it was shown that they are almost
identical, which confirms the correctness of the proposed approach based on the two equations.

In the future, the presented approach can be extended to an axisymmetric (spatial) task,
which better reflects the course of the analyzed phenomenon.

The developed algorithm and computer program should be supplemented with procedures
that take into account melting, evaporation and ablation processes (Alexopoulou and Markopou-
los, 2023). This will allow one to analyse thermal processes occurring in thin metal layers under
the influence of higher laser powers.
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